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Abstract— Recent interest has developed around the prob-
lem of assaying the controllability of networks in the brain.
The analysis of such networks is highly nontrivial, owing
to their overwhelming complexity. Thus, any controllability
analysis must tradeoff against model complexity/explanatory
power, and analysis tractability. Here, we consider a class of
neuronal network models with nearly linear dynamics, whose
primary complication arises due to a sigmoidal nonlinearity
in the neuronal coupling. Exploiting the equivalence between
the controllability gramian and the steady state covariance
matrix of a linear system under white noise, we develop an
approximate controllability analysis based on the method of
stochastic linearization (quasilinearization). We show that for
this relatively simple system, the quasilinear approach gener-
ates a significantly better characterization of controllability as
compared with a Jacobian linearization. Our results provide a
new tool for assessing controllability of networks with sigmoidal
interactions, and, moreover, highlight the potential inaccuracy
of linear characterizations of networks with even relatively mild
nonlinearities.

I. INTRODUCTION

An emerging line of research pertains to understanding the
control properties, including controllability, of networks in
the brain [1]–[4]. Understanding such propeties has intrigu-
ing implications for connecting brain network dynamics at
multiple scales to information processing and function. Nat-
urally, any approach to analyzing controllability of a system
as complex as the brain must face the fundamental tradeoff
between analytical tractability and model explanatory power.
Characterization of brain network controllability has been
carried out at macroscopic scales [1], via analysis of linear
models fit to anatomical data; and at microscopic scales,
via analysis of small networks of canonical spiking neuron
models [3]. Reconciling these types of analysis across scale
and interpreting them in the context of neurobiology is likely
to be an active line of investigation over the next decade.

Several important frameworks for assessing controllability
of nonlinear systems have been established in the latter half
of the 20th century, most revolving around analysis of the
Lie bracket (e.g., [5]–[7]). However, the depth of analysis
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associated with these methods makes their application to
high-dimensional neural models challenging. More generally,
the problem of tractably analyzing control properties of
complex, nonlinear networked systems remains unresolved.

The goal of this paper is to develop an approximate
controllability analysis for a class of firing rate models. Such
models comprise an important class of dynamical systems
models in computational neuroscience by providing a mean-
field description of the spiking activity of neurons. They are
appealing as they offer a relatively tractable description of
neuronal activity, as compared to more detailed biophysical
models, such as the classical Hodgkin-Huxley model that
describe spiking processes. The main complexity in rate
models is a sigmoidal nonlinearity that bounds the influence
of neighboring neurons on each other. While relatively
straightforward on the spectrum of possible nonlinearities,
such functions nevertheless substantially complicate the de-
ployment of exact analysis of controllability, particularly for
large networks.

Here, we exploit the technique of stochastic linearization
(or, quasilinearization) [2] to obtain an linear approximation
of the rate network dynamics subject to a white noise input.
The underlying concept behind this approach is the equiva-
lence between the controllability gramian of a linear system
and the steady-state covariance of such a system driven by
white noise. We show that, indeed, quasilinearization can
provide a highly accurate approximation of the fixed energy
reachable sets of neuronal rate networks, thus enabling a
characterization of network controllability. We verify that
this approximation radically outperforms a simple Jacobian
linearization in high variance (i.e., far from equilibrium)
regimes.

This paper is organized in three parts: in the first part,
we outline a methodology to approximate the controllability
of a nonlinear neuronal network by introducing a vector
of quasilinear gains, through which we linearize a set of
nonlinear equations that govern the network dynamics. Then,
we optimize the quasilinear gains stochastically based on
the observation of how the responses of the neurons vary
with the variances of white-noise input. This method enables
us to approximate steady-state covariance of the nonlinear
system. In the second part of this paper, we show that this
approximation can serve as an accurate characterization of
controllability. Finally, in the last part of this paper, we
demonstrate the quality of the quasilinear approximation as
compared with standard Jacobian linearization.
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II. PRELIMINARIES & METHODOLOGY

A. Neuronal Firing Rate Networks

We considered neuronal rate models, which describe the
firing (spiking) rate (spikes/time, generally specified in Hz)
of neurons in a population. Specifically, we considered rate
models of the form:

dri

dt
= αiri +

n

∑
j=1

f j(Wjir j)+ I(t) for i = 1,2,3, ...,n. (1)

where ri represents firing rate of the i-th neuron, αi is the
decay constant of the i-th neuron, fi is a nonlinear function
specific to the i-th neuron, and I is an external input to the
system that is used to model background excitation, or noise.
Here, we assume that I is common to all neurons, so that
the same amount of external input current is injected to all
neurons. The parameter Wji describes the synaptic weight
that couples neuron j to neuron i. Such a weight may be
excitatory (positive) or inhibitory (negative). Typically, the
non-linearity fi is a sigmoid [8]. Such a sigmoid is important
as it limits the influence of neighboring neurons, consistent
with biological constraints.

B. Sigmoidal - Saturation Approximation

Typically, the sigmoid function fi is modeled as a logistic
sigmoid of the form:

fi(x) =
1

1+ e−α(x−x50)
(2)

where α determines how fast fi increases as a function of x
and x50 is the x for which fi reaches 50% of its maximum
value. Below, in the illustration of our methodology, we used
a sigmoid with α = 4 and x50 = 1 and replaced the sigmoidal
nonlinearity (blue) with an odd piece-wise differentiable
saturation function (red)

fi (x) =

 0, x < 0.5
x−0.5, x ∈ [0.5,1.5]

1, x > 1.5
(3)

as shown in Figure 1. The nonlinearity (3) preserves the
qualitative behavior of the function (2), while enabling a key
analytical advantage due to its linear characteristic within the
limits of saturation.

C. Approximate Controllability Analysis via Quasilineariza-
tion

1) Stochastic Linearization: The key methodology in-
volves using stochastic linearization [9] to develop a linear
approximation of the rate equations in the case of a white
noise input. Briefly, stochastic linearization seeks, in essence,
the expected value of the slope of fi(x), i.e. E(∂ f/∂x), the
so-called ‘quasilinear gain’. In the case of a feedforward
system, this expectation is the best linear approximation
of fi(x) in the mean square sense [2], [9]. The method
is referred to as ‘quasilinearization’ since, in constrast to
standard Jacobian linearization, the linear approximation
depends not simply on fi(x), but on all system parameters
(via the expectation operation).
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Fig. 1. Comparison of sigmoid function used in traditional model and
saturation function used in our model.

Quasilinearization of the rate equations generates a vector
N ∈ R(n×1) of quasilinear gains. The general form of the
quasilinear firing rate model is thus:

dr̂i

dt
=−αir̂i +

n

∑
j=1

N jWjir̂ j + I(t) for i = 1,2,3, ...,n, (4)

where r̂i are the approximate firing rates. The quasilinear
gain N j and the connection weight Wji from the j-th to the
i-th neuron are multiplied by the firing rate of each projecting
neuron. Then, they are summed to represent the total post-
synaptic input received by the i-th neuron in the network.

2) Converting (3) to an Odd Nonlinearity: As written, (3)
is non-negative and, thus, prima facie our problem falls into
the category of stochastic linearization with assymetric non-
linearities [10], [11]. However, we can convert the problem
to a more conventional quasilinear setup by assuming that
the state variables ri represent deviations from a nonzero
baseline, so that E(ri) = 0 under the assumption that I(t)
is zero mean white noise. In this case, x50 in (3) can be
assumed to be zero, and the entire function is shifted to be
centered at x = 0, i.e., (3) becomes an odd nonlinearity.

3) Computing the Optimal Quasilinear Gain: In order to
find the optimal quasilinear gains, we need to determine
the relationship between N j and the distribution of r̂ j. As
described above, our goal is to approximate f (r j) with N j r̂ j
to minimize the following cost function [2].

ε(N j) = E[(r j(t)− r̂ j(t))2] (5)

As developed in [2], when the input to the nonlinearity is
zero mean and Gaussian, minimization of ε(N) amounts to
computing

N j = E

[
d f (r̂ j)

dr̂ j

∣∣∣∣∣r̂ j=r̂ j(t)

]
(6)

which, under the quasilinear approximation of Gaussianity,
reduces to

N j =
∫

∞

−∞

E
[

d
dr̂ j

f (r̂ j)

]
1√

2πσ2
r̂ j

exp(− r̂2

2σ2
r̂ j

)dr̂ (7)
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where σr̂ j denotes the standard deviation of r̂. In reality, r j
is not Gaussian, and thus, the formulation on the right hand
side of (7) is the key point of the approximation. We notice
that the above expression is equivalent to

N j = er f (
1√
2σ2

r̂ j

) (8)

A subtle, but absolutely crucial observation is that both the
left and right sides of (8) depend on N j. This is due to the
fact that the distribution of r̂ j, the approximate firing rate,
itself depends on the quasilinear gain N j. Thus, the final step
is to solve (8) for all j.

4) Deriving Moment Equations of Stochastic Differential
Equations: Finally, it is necessary to define the relationships
between the variance of the input I(t), denoted ση

2 and that
of r̂ in order to solve for the quasilinear gains. We accomplish
this by computing the first and the second moments of the
stochastic differential equations using Ito's formula. These
moments can then be subtracted as shown below to determine
the variance of the stochastic response.

Var(r̂) = E[(r̂−E(r̂))2] = E[r̂2]− (E[r̂])2 (9)

We convert our quasilinear equations to stochastic differential
equations of the form

dr̂ = a(r̂)dt + c(r̂)dBt (10)

where r̂ =

 r̂1
...

r̂n

 for n neurons. Note that c(r̂) is ση (from

I(t)), while a(r̂) will vary as a function of r̂. We then use
Ito's product rule to obtain expected values to get the second
moment of the i-th neuron [12].

dE[(r̂i)
2]

dt
= 2E[(r̂i)ai(r̂)]+E[ση

2] (11)

Thr cross term representing the second moment between two
firing neurons, i and j, can be obtained by modifying the
moment formula as

dE[(r̂i)(r̂ j)]

dt
= E[(r̂i)a j(r̂)]+E[(r̂ j)ai(r̂)]+E[ση

2] (12)

We then solve for

dE[(r̂i)
2]

dt
= 0 for i = 1,2,3, ...,n. (13)

dE[(r̂i)(r̂ j)]

dt
= 0

for i = 1,2,3, ...,n j = 1,2,3, ...,n
(14)

When I(t) is of zero mean, the variance of each approximate
rate variable is simply the second moment, so that

σ
2
r̂i
(N) = E[(r̂1)

2], (15)

where, here, we make the dependence on N= (N1,N2, ...,Nn)
explicit. Substituting (15) into (8) generates n equations of

the form

N1 =er f (
1√

2σ2
r̂1
(N)

)

N2 =er f (
1√

2σ2
r̂2
(N)

)

...

Nn =er f (
1√

2σ2
r̂n
(N)

)

(16)

In our results, we solved (16) numerically in MATLAB. It
is important to note that these equations can, in some cases,
produce multiple solutions for each N j. However, it has been
shown [9] that typically a unique solution can be expected.
Below, we present results that highlight the veracity of this
approach in characterizing rate network controllability.

III. RESULTS
A. Accurate Characterizations of Fixed-Energy Reachable
Sets

We used the above methodology to assess the controlla-
bility of 1, 2 and 3-dimensional rate networks. For this, we
characterized the fixed energy reachable set:

r̂T
Σr̂ = 1, (17)

which corresponds to an ellipsoid in n−dimensions. This
ellipsoid encompasses the unit-energy reachable set, where
Σ is the inverse of the infinite-time controllability gramian,
or, equivalently, the steady-state covariance of the system
under white noise. The fixed energy reachable set provides
a holistic quantification of controllability, and is the basis of
many contemporary controllability metrics [13].

To highlight the utility of our results, we compared our
characterization with one associated obtained from straight-
forward Jacobian linearization. Since, we considered sig-
moidal nonlinearities with unit slope at the origin, a Jacobian
linearization is equivalent to replacing f (·) in (1) with
its argument. We simulated the original nonlinear system
subject to white noise and recorded firing rate trajectories
of all neurons. We then compared these trajectories from
the nonlinear simulation and compared the output to the
analytical predictions of the quasilinear and Jacobian linear
approximations.

1) Two dimensional network analysis: Here, we use a
specific example of 2-D network to demonstrate our method-
ology. Consider a nonlinear model defined as below:

dr1

dt
=−α1r1 + f1(r1)+ f2(W21r2)+ I(t)

dr2

dt
=−α2r2 + f2(r2)+ f1(W12r1)+ I(t)

(18)

Its corresponding quasilinear model can be expressed as,

dr̂1

dt
=−α1r̂1 +N1r̂1 +N2W21r̂2 + I(t)

dr̂2

dt
=−α2r̂2 +N2r̂2 +N1W12r̂1 + I(t)

(19)
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Fig. 2. Two dimensional unit-energy reachable ellipses of Quasilinear and
Jacobian approximations compared with white-noise induced trajectory of
the nonlinear system.

Following Ito’s product rule and substitution of variances
of firing rates resulted in the following expressions:

N1 = er f

 √
α1−N1√

N2[α1−α2−2(N1−α1)(N2−α2)]
(N1+N2−α1−α2)[(N1−α1)(N2−α2)−N1N2]

−1ση


N2 = er f

 √
α2−N2√

N1[α1−α2−2(N1−α1)(N2−α2)]
(N1+N2−α1−α2)[(N1−α1)(N2−α2)−N1N2]

−1ση


(20)

Next, we optimized the above two error functions to solve
for N1 and N2.

We simulated the 2-D network with parameters as de-
scribed in the Appendix. Figure 2 depicts unit energy
reachable ellipses resulting from quasilinear and Jacobian
approximations. Overlaid is the actual trajectory of the
nonlinear system excited by white noise. Qualitatively, the
figure reveals that the quasilinear ellipse provides a much
closer approximation, in terms of shape and size, to the
actual trajectory of the nonlinear system. The controllability
Gramian of the Jacobian linearization encloses the actual
trajectory, but is a highly conservative over-approximation.

2) Three dimensional network analysis: We considered a
three-dimensional network with parameters as described in
the Appendix, and followed the above procedure to obtain
the quasilinear gains. Figures 3,4, and 5 depict the two-
dimensional projections of unit-energy reachable sets gener-
ated from the quasilinear and Jacobian linearized systems.
These projections are depicted as a union of level sets
transverse to the projection plane. Overlaid on these ellipses
are projections of the trajectory of the actual nonlinear
system, obtained via simulation.

These figures again illustrate the stark over-approximation
generated by Jacobian linearization, in contrast to the tight
characterization afforded by the quasilinear approach.
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Fig. 3. Two dimensional projection (N1 vs. N2) of unit-energy reachable
ellipsoids of Quasilinear and Jacobian approximations, with trajectory of
nonlinear system overlaid. Each projection is depicted as a union of level
sets of N3.
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Fig. 4. Two dimensional projection (N1 vs. N3) of unit-energy reachable
ellipsoids of Quasilinear and Jacobian approximations, with trajectory of
nonlinear system overlaid. Each projection is depicted as a union of level
sets of N2.

B. Monte-Carlo Analysis of 2- and 3-D Rate Networks

To assess the accuracy of our approach, we performed
Monte-Carlo analysis of the two examples that we analyzed
above. 100 and 651 simulations were performed for the two-
dimensional and three-dimensional examples, respectively.
Then, we computed the covariance mean (2x2 or 3x3) across
the total number of simulations and created error bars for
each component in the covariance matrix in terms of percent
error of Quasilinear and Jacobian approximations compared
to the actual nonlinear response.

In Figure 3, the average covariance percent error of the
quasilinear approach is close to zero with standard deviation
less than 1%. This analysis applies to all four entries in the
quasilinear covariance matrix. On the other hand, Jacobian
approximation generates average covariance percent error
at about −3% with standard deviation larger than approx-
imately 5%. Hence, the results from the error bar chart
confirms our qualitative results from Figures 2,3,4, and 5 in
that quasilinear approach generates controllability Gramian
that is a closer approximation to the actual controllability
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Fig. 5. Two dimensional projection (N2 vs. N3) of unit-energy reachable
ellipsoids of Quasilinear and Jacobian approximations, with trajectory of
nonlinear system overlaid. Each projection is depicted as a union of level
sets of N1.

Gramian.
Similarly, Figure 4 depicts the covariance percent errors

of quasilinear and Jacobian approximations in the 3-D neural
network. The nine elements in the covariance matrix of the
Jacobian approximation show average percent errors ranging
from 8% to 11% with standard deviations larger than 10%.
Again, the error bar chart generated in the 3-D paradigm
agrees with our results from the three projection figures
(Figures 3,4, and 5) and our conclusion that our methodology
produces a closer approximation in terms of controllability
of the network than the local linearization approximation.
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Fig. 6. Comparison of the error bars of Quasilinear and Jacobian
approximations in a two dimensional motif. Four sets of numbers labeled
on the x-axis indicate the matrix element in the 2-by-2 covariance matrix.

IV. CONCLUSIONS

In this paper, we utilize the technique of quasilinearization
to approximate characterize the controllability of a rate
network with sigmoidal nonlinearities in the coupling func-
tion. The techniques centers on obtaining a controllability
gramian for a stochastically linearized version of the original
nonlinear rate network. We illustrate the efficacy of our
methdology for a neuronal firing rate model with sigmoidal
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Fig. 7. Comparison of the error bars of Quasilinear and Jacobian
approximations in a three dimensional motif. Nine sets of numbers labeled
on the x-axis indicate the matrix element in the 3-by-3 covariance matrix.

nonlinearityWe convert the nonlinear equations into a set
of linear equations by adopting a vector of quasilinear
gains N, which we optimize stochastically by defining the
relationships between the variance of the input and that
of the variable response and solving for n error functions.
The accuracy of our approach is demonstrated by means of
simulation results qualitatively and quantitatively from two-
and three-dimensional network examples.

The results indicate that a quasilinear approach may pro-
vide a more tractable alternative to direct nonlinear control-
lability analysis for these classes of networks. Moreover,
they demonstrate that simple linearization risks generating
significant overapproximation of the controllability of the
nonlinear system. This latter result is, of course, not too
surprising since Jacobian linearization is, by definition, a
local approximation. Thus, the main utility of our approach
is the ability to characterize high-variance regimes, in which
the nonlinearity is activated.

Several nontrivial challenges remain to be resolved in
the generalization of this method. Notable among them is
scalability, since our approach involves high-dimensional
optimization (i.e., finding zeros of the (16)). Thus, the
principle immediate use-case of this research may be in the
study of specific, small-scale network configurations. We
note that an alternative formulation of this model involves
absorbing the sum in (1) into the sigmoid (as opposed to
the sum of sigmoids used herein). In this case, the overall
methodology does not change, with appropriate modification
to the right hand side of (8).

V. APPENDIX

In this section, we provide the exact parameter values that
we used to simulate the results in III. All of our simulations
lasted for the time duration of 500 msec. Simulation and
quasilinear gain computations were implemented in MAT-
LAB.
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A. 2-D network parameters

In a 2-D paradigm, the decay constants, α1 and α2,were
set to equal to 3.5, and connection weights W12 and W21
were randomly chosen from a normal distribution (mean=1,
standard deviation=1). Next, fmincon MATLAB function
was utilized to perform nonlinear optimization of two error
functions. We minimized one of the equations while setting
the other as a constraint, making the latter equal to zero. ση

was chosen to equal 30 to solve for the two quasilinear gains
N1 and N2.

B. 3-D network parameters

Similarly, a 3-D paradigm involved finding the optimal
triple of quasilinear gains for the following parameters:
α1 =α2 = 3 and α3 = 4, Wji randomly chosen from a normal
distribution(mean=1, standard deviation=1), and ση = 20.
This time, we set two of the three error functions as our
constraints and minimized the third equation using fmincon
MATLAB function.
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